Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
4.
Viruses ; 15(3)2023 02 28.
Article in English | MEDLINE | ID: covidwho-2275760

ABSTRACT

The importance of genomic surveillance on emerging diseases continues to be highlighted with the ongoing SARS-CoV-2 pandemic. Here, we present an analysis of a new bat-borne mumps virus (MuV) in a captive colony of lesser dawn bats (Eonycteris spelaea). This report describes an investigation of MuV-specific data originally collected as part of a longitudinal virome study of apparently healthy, captive lesser dawn bats in Southeast Asia (BioProject ID PRJNA561193) which was the first report of a MuV-like virus, named dawn bat paramyxovirus (DbPV), in bats outside of Africa. More in-depth analysis of these original RNA sequences in the current report reveals that the new DbPV genome shares only 86% amino acid identity with the RNA-dependent RNA polymerase of its closest relative, the African bat-borne mumps virus (AbMuV). While there is no obvious immediate cause for concern, it is important to continue investigating and monitoring bat-borne MuVs to determine the risk of human infection.


Subject(s)
COVID-19 , Chiroptera , Animals , Humans , Mumps virus/genetics , Phylogeny , SARS-CoV-2 , Genomics , Asia, Southeastern/epidemiology , Paramyxoviridae/genetics
5.
iScience ; 26(4): 106256, 2023 Apr 21.
Article in English | MEDLINE | ID: covidwho-2272746

ABSTRACT

Emerging SARS-CoV-2 variants pose a threat to human health worldwide. SARS-CoV-2 receptor binding domain (RBD)-based vaccines are suitable candidates for booster vaccines, eliciting a focused antibody response enriched for virus neutralizing activity. Although RBD proteins are manufactured easily, and have excellent stability and safety properties, they are poorly immunogenic compared to the full-length spike protein. We have overcome this limitation by engineering a subunit vaccine composed of an RBD tandem dimer fused to the N-terminal domain (NTD) of the spike protein. We found that inclusion of the NTD (1) improved the magnitude and breadth of the T cell and anti-RBD response, and (2) enhanced T follicular helper cell and memory B cell generation, antibody potency, and cross-reactive neutralization activity against multiple SARS-CoV-2 variants, including B.1.1.529 (Omicron BA.1). In summary, our uniquely engineered RBD-NTD-subunit protein vaccine provides a promising booster vaccination strategy capable of protecting against known SARS-CoV-2 variants of concern.

6.
Nat Commun ; 13(1): 7629, 2022 Dec 09.
Article in English | MEDLINE | ID: covidwho-2160211

ABSTRACT

The ongoing COVID-19 pandemic has demonstrated that viral diseases represent an enormous public health and economic threat to mankind and that individuals with compromised immune systems are at greater risk of complications and death from viral diseases. The development of broad-spectrum antivirals is an important part of pandemic preparedness. Here, we have engineer a series of designer cells which we term autonomous, intelligent, virus-inducible immune-like (ALICE) cells as sense-and-destroy antiviral system. After developing a destabilized STING-based sensor to detect viruses from seven different genera, we have used a synthetic signal transduction system to link viral detection to the expression of multiple antiviral effector molecules, including antiviral cytokines, a CRISPR-Cas9 module for viral degradation and the secretion of a neutralizing antibody. We perform a proof-of-concept study using multiple iterations of our ALICE system in vitro, followed by in vivo functionality testing in mice. We show that dual output ALICESaCas9+Ab system delivered by an AAV-vector inhibited viral infection in herpetic simplex keratitis (HSK) mouse model. Our work demonstrates that viral detection and antiviral countermeasures can be paired for intelligent sense-and-destroy applications as a flexible and innovative method against virus infection.


Subject(s)
COVID-19 , Virus Diseases , Viruses , Humans , Mice , Animals , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Virus Replication , Pandemics
7.
Nat Commun ; 13(1): 7635, 2022 Dec 10.
Article in English | MEDLINE | ID: covidwho-2160209

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is characterised by airflow limitation and infective exacerbations, however, in-vitro model systems for the study of host-pathogen interaction at the individual level are lacking. Here, we describe the establishment of nasopharyngeal and bronchial organoids from healthy individuals and COPD that recapitulate disease at the individual level. In contrast to healthy organoids, goblet cell hyperplasia and reduced ciliary beat frequency were observed in COPD organoids, hallmark features of the disease. Single-cell transcriptomics uncovered evidence for altered cellular differentiation trajectories in COPD organoids. SARS-CoV-2 infection of COPD organoids revealed more productive replication in bronchi, the key site of infection in severe COVID-19. Viral and bacterial exposure of organoids induced greater pro-inflammatory responses in COPD organoids. In summary, we present an organoid model that recapitulates the in vivo physiological lung microenvironment at the individual level and is amenable to the study of host-pathogen interaction and emerging infectious disease.


Subject(s)
COVID-19 , Pulmonary Disease, Chronic Obstructive , Humans , SARS-CoV-2 , Organoids , Bronchi , Host-Pathogen Interactions
8.
Proc Natl Acad Sci U S A ; 119(42): e2202871119, 2022 10 18.
Article in English | MEDLINE | ID: covidwho-2062401

ABSTRACT

COVID-19 is the latest zoonotic RNA virus epidemic of concern. Learning how it began and spread will help to determine how to reduce the risk of future events. We review major RNA virus outbreaks since 1967 to identify common features and opportunities to prevent emergence, including ancestral viral origins in birds, bats, and other mammals; animal reservoirs and intermediate hosts; and pathways for zoonotic spillover and community spread, leading to local, regional, or international outbreaks. The increasing scientific evidence concerning the origins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is most consistent with a zoonotic origin and a spillover pathway from wildlife to people via wildlife farming and the wildlife trade. We apply what we know about these outbreaks to identify relevant, feasible, and implementable interventions. We identify three primary targets for pandemic prevention and preparedness: first, smart surveillance coupled with epidemiological risk assessment across wildlife-livestock-human (One Health) spillover interfaces; second, research to enhance pandemic preparedness and expedite development of vaccines and therapeutics; and third, strategies to reduce underlying drivers of spillover risk and spread and reduce the influence of misinformation. For all three, continued efforts to improve and integrate biosafety and biosecurity with the implementation of a One Health approach are essential. We discuss new models to address the challenges of creating an inclusive and effective governance structure, with the necessary stable funding for cross-disciplinary collaborative research. Finally, we offer recommendations for feasible actions to close the knowledge gaps across the One Health continuum and improve preparedness and response in the future.


Subject(s)
COVID-19 , Chiroptera , One Health , Animals , Animals, Wild , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control , SARS-CoV-2 , Zoonoses/epidemiology , Zoonoses/prevention & control
9.
Front Public Health ; 10: 883066, 2022.
Article in English | MEDLINE | ID: covidwho-1862696

ABSTRACT

The COVID-19 pandemic has caused more than 448 million cases and 6 million deaths worldwide to date. Omicron is now the dominant SARS-CoV-2 variant, making up more than 90% of cases in countries reporting sequencing data. As the pandemic continues into its third year, continued testing is a strategic and necessary tool for transitioning to an endemic state of COVID-19. Here, we address three critical topics pertaining to the transition from pandemic to endemic: defining the endemic state for COVID-19, highlighting the role of SARS-CoV-2 testing as endemicity is approached, and recommending parameters for SARS-CoV-2 testing once endemicity is reached. We argue for an approach that capitalizes on the current public health momentum to increase capacity for PCR-based testing and whole genome sequencing to monitor emerging infectious diseases. Strategic development and utilization of testing, including viral panels in addition to vaccination, can keep SARS-CoV-2 in a manageable endemic state and build a framework of preparedness for the next pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , COVID-19/epidemiology , COVID-19 Testing , Humans , Pandemics , SARS-CoV-2/genetics
10.
Viruses ; 14(2)2022 01 18.
Article in English | MEDLINE | ID: covidwho-1625960

ABSTRACT

Bats have been recognized as an exceptional viral reservoir, especially for coronaviruses. At least three bat zoonotic coronaviruses (SARS-CoV, MERS-CoV and SARS-CoV-2) have been shown to cause severe diseases in humans and it is expected more will emerge. One of the major features of CoVs is that they are all highly prone to recombination. An extreme example is the insertion of the P10 gene from reoviruses in the bat CoV GCCDC1, first discovered in Rousettus leschenaultii bats in China. Here, we report the detection of GCCDC1 in four different bat species (Eonycteris spelaea, Cynopterus sphinx, Rhinolophus shameli and Rousettus sp.) in Cambodia. This finding demonstrates a much broader geographic and bat species range for this virus and indicates common cross-species transmission. Interestingly, one of the bat samples showed a co-infection with an Alpha CoV most closely related to RsYN14, a virus recently discovered in the same genus (Rhinolophus) of bat in Yunnan, China, 2020. Taken together, our latest findings highlight the need to conduct active surveillance in bats to assess the risk of emerging CoVs, especially in Southeast Asia.


Subject(s)
Chiroptera/virology , Coronaviridae Infections/veterinary , Coronaviridae/classification , Coronaviridae/genetics , Disease Reservoirs/veterinary , Disease Reservoirs/virology , Phylogeography , Recombination, Genetic , Animals , Cambodia/epidemiology , China/epidemiology , Chiroptera/classification , Coronaviridae/isolation & purification , Coronaviridae Infections/epidemiology , Coronaviridae Infections/transmission , Evolution, Molecular , Genome, Viral , Phylogeny
11.
Clin Infect Dis ; 73(9): e2932-e2942, 2021 11 02.
Article in English | MEDLINE | ID: covidwho-1500989

ABSTRACT

BACKGROUND: Key knowledge gaps remain in the understanding of viral dynamics and immune response of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection. METHODS: We evaluated these characteristics and established their association with clinical severity in a prospective observational cohort study of 100 patients with PCR-confirmed SARS-CoV-2 infection (mean age, 46 years; 56% male; 38% with comorbidities). Respiratory samples (n = 74) were collected for viral culture, serum samples for measurement of IgM/IgG levels (n = 30), and plasma samples for levels of inflammatory cytokines and chemokines (n = 81). Disease severity was correlated with results from viral culture, serologic testing, and immune markers. RESULTS: Fifty-seven (57%) patients developed viral pneumonia, of whom 20 (20%) required supplemental oxygen, including 12 (12%) with invasive mechanical ventilation. Viral culture from respiratory samples was positive for 19 of 74 patients (26%). No virus was isolated when the PCR cycle threshold (Ct) value was >30 or >14 days after symptom onset. Seroconversion occurred at a median (IQR) of 12.5 (9-18) days for IgM and 15.0 (12-20) days for IgG; 54/62 patients (87.1%) sampled at day 14 or later seroconverted. Severe infections were associated with earlier seroconversion and higher peak IgM and IgG levels. Levels of IP-10, HGF, IL-6, MCP-1, MIP-1α, IL-12p70, IL-18, VEGF-A, PDGF-BB, and IL-1RA significantly correlated with disease severity. CONCLUSIONS: We found virus viability was associated with lower PCR Ct value in early illness. A stronger antibody response was associated with disease severity. The overactive proinflammatory immune signatures offer targets for host-directed immunotherapy, which should be evaluated in randomized controlled trials.


Subject(s)
COVID-19 , Pneumonia, Viral , Antibodies, Viral , Female , Humans , Immunoglobulin M , Male , Middle Aged , Prospective Studies , SARS-CoV-2 , Seroconversion
12.
ACS Nano ; 15(10): 15754-15770, 2021 10 26.
Article in English | MEDLINE | ID: covidwho-1454714

ABSTRACT

Multiple successful vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are urgently needed to address the ongoing coronavirus disease 2019 (Covid-19) pandemic. In the present work, we describe a subunit vaccine based on the SARS-CoV-2 spike protein coadministered with CpG adjuvant. To enhance the immunogenicity of our formulation, both antigen and adjuvant were encapsulated with our proprietary artificial cell membrane (ACM) polymersome technology. Structurally, ACM polymersomes are self-assembling nanoscale vesicles made up of an amphiphilic block copolymer comprising poly(butadiene)-b-poly(ethylene glycol) and a cationic lipid, 1,2-dioleoyl-3-trimethylammonium-propane. Functionally, ACM polymersomes serve as delivery vehicles that are efficiently taken up by dendritic cells (DC1 and DC2), which are key initiators of the adaptive immune response. Two doses of our formulation elicit robust neutralizing antibody titers in C57BL/6 mice that persist at least 40 days. Furthermore, we confirm the presence of functional memory CD4+ and CD8+ T cells that produce T helper type 1 cytokines. This study is an important step toward the development of an efficacious vaccine in humans.


Subject(s)
COVID-19 Vaccines/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing , Antibodies, Viral , CD8-Positive T-Lymphocytes , COVID-19/prevention & control , Humans , Mice , Mice, Inbred C57BL , Nanoparticles , Protein Subunits , SARS-CoV-2 , Vaccines, Subunit
13.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: covidwho-1428995

ABSTRACT

Bats are responsible for the zoonotic transmission of several major viral diseases, including those leading to the 2003 SARS outbreak and likely the ongoing COVID-19 pandemic. While comparative genomics studies have revealed characteristic adaptations of the bat innate immune system, functional genomic studies are urgently needed to provide a foundation for the molecular dissection of the viral tolerance in bats. Here we report the establishment of genome-wide RNA interference (RNAi) and CRISPR libraries for the screening of the model megabat, Pteropus alecto. We used the complementary RNAi and CRISPR libraries to interrogate P. alecto cells for infection with two different viruses: mumps virus and influenza A virus, respectively. Independent screening results converged on the endocytosis pathway and the protein secretory pathway as required for both viral infections. Additionally, we revealed a general dependence of the C1-tetrahydrofolate synthase gene, MTHFD1, for viral replication in bat cells and human cells. The MTHFD1 inhibitor, carolacton, potently blocked replication of several RNA viruses, including SARS-CoV-2. We also discovered that bats have lower expression levels of MTHFD1 than humans. Our studies provide a resource for systematic inquiry into the genetic underpinnings of bat biology and a potential target for developing broad-spectrum antiviral therapy.


Subject(s)
Aminohydrolases/genetics , COVID-19/genetics , Formate-Tetrahydrofolate Ligase/genetics , Methylenetetrahydrofolate Dehydrogenase (NADP)/genetics , Multienzyme Complexes/genetics , Pandemics , Aminohydrolases/antagonists & inhibitors , Animals , Antiviral Agents/therapeutic use , COVID-19/virology , Cell Line , Chiroptera/genetics , Chiroptera/virology , Formate-Tetrahydrofolate Ligase/antagonists & inhibitors , Humans , Methylenetetrahydrofolate Dehydrogenase (NADP)/antagonists & inhibitors , Minor Histocompatibility Antigens , Multienzyme Complexes/antagonists & inhibitors , RNA Viruses/genetics , SARS-CoV-2/pathogenicity , Virus Replication/genetics , COVID-19 Drug Treatment
14.
Emerg Infect Dis ; 27(2): 663-666, 2021 02.
Article in English | MEDLINE | ID: covidwho-1389113

ABSTRACT

Antibody response against nucleocapsid and spike proteins of SARS-CoV-2 in 11 persons with mild or asymptomatic infection rapidly increased after infection. At weeks 18-30 after diagnosis, all remained seropositive but spike protein-targeting antibody titers declined. These data may be useful for vaccine development.


Subject(s)
COVID-19/immunology , Immunity, Humoral , SARS-CoV-2/immunology , Adolescent , Adult , Antibodies, Viral/blood , Antibodies, Viral/immunology , Asymptomatic Infections , COVID-19/blood , COVID-19/virology , Child , Female , Humans , Longitudinal Studies , Male , Middle Aged , Nucleocapsid Proteins/blood , Nucleocapsid Proteins/immunology , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/immunology , Time Factors , Vietnam , Young Adult
15.
mSphere ; 5(1)2020 01 29.
Article in English | MEDLINE | ID: covidwho-1383493

ABSTRACT

Coronaviruses (CoVs) of bat origin have caused two pandemics in this century. Severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV both originated from bats, and it is highly likely that bat coronaviruses will cause future outbreaks. Active surveillance is both urgent and essential to predict and mitigate the emergence of these viruses in humans. Next-generation sequencing (NGS) is currently the preferred methodology for virus discovery to ensure unbiased sequencing of bat CoVs, considering their high genetic diversity. However, unbiased NGS is an expensive methodology and is prone to missing low-abundance CoV sequences due to the high background level of nonviral sequences present in surveillance field samples. Here, we employ a capture-based NGS approach using baits targeting most of the CoV species. Using this technology, we effectively reduced sequencing costs by increasing the sensitivity of detection. We discovered nine full genomes of bat CoVs in this study and revealed great genetic diversity for eight of them.IMPORTANCE Active surveillance is both urgent and essential to predict and mitigate the emergence of bat-origin CoV in humans and livestock. However, great genetic diversity increases the chance of homologous recombination among CoVs. Performing targeted PCR, a common practice for many surveillance studies, would not reflect this diversity. NGS, on the other hand, is an expensive methodology and is prone to missing low-abundance CoV sequences. Here, we employ a capture-based NGS approach using baits targeting all CoVs. Our work demonstrates that targeted, cost-effective, large-scale, genome-level surveillance of bat CoVs is now highly feasible.


Subject(s)
Chiroptera/virology , Coronavirus/classification , Coronavirus/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Animals , Genetic Variation , Genome, Viral
17.
Nat Commun ; 12(1): 5113, 2021 08 25.
Article in English | MEDLINE | ID: covidwho-1373413

ABSTRACT

SARS-CoV-2 is a major threat to global health. Here, we investigate the RNA structure and RNA-RNA interactions of wildtype (WT) and a mutant (Δ382) SARS-CoV-2 in cells using Illumina and Nanopore platforms. We identify twelve potentially functional structural elements within the SARS-CoV-2 genome, observe that subgenomic RNAs can form different structures, and that WT and Δ382 virus genomes fold differently. Proximity ligation sequencing identify hundreds of RNA-RNA interactions within the virus genome and between the virus and host RNAs. SARS-CoV-2 genome binds strongly to mitochondrial and small nucleolar RNAs and is extensively 2'-O-methylated. 2'-O-methylation sites are enriched in viral untranslated regions, associated with increased virus pair-wise interactions, and are decreased in host mRNAs upon virus infection, suggesting that the virus sequesters methylation machinery from host RNAs towards its genome. These studies deepen our understanding of the molecular and cellular basis of SARS-CoV-2 pathogenicity and provide a platform for targeted therapy.


Subject(s)
COVID-19/virology , Host Microbial Interactions , RNA, Viral/metabolism , RNA/metabolism , SARS-CoV-2/physiology , COVID-19/genetics , COVID-19/metabolism , COVID-19/physiopathology , DNA Methylation , Genome, Viral , Humans , Nucleic Acid Conformation , RNA/chemistry , RNA/genetics , RNA, Viral/chemistry , RNA, Viral/genetics , SARS-CoV-2/chemistry , SARS-CoV-2/genetics
18.
Methods Mol Biol ; 2327: 119-137, 2021.
Article in English | MEDLINE | ID: covidwho-1363726

ABSTRACT

Outbreak analysis and transmission surveillance of viruses can be performed via whole-genome sequencing after viral isolation. Such techniques have recently been applied to characterize and monitor SARS-CoV-2 , the etiological agent of the COVID-19 pandemic. However, the isolation and culture of SARS-CoV-2 is time consuming and requires biosafety level 3 containment, which is not ideal for many resource-constrained settings. An alternate method, bait capture allows target enrichment and sequencing of the entire SARS-CoV-2 genome eliminating the need for viral culture. This method uses a set of hybridization probes known as "baits" that span the genome and provide sensitive, accurate, and minimal off-target hybridization. Baits can be designed to detect any known virus or bacteria in a wide variety of specimen types, including oral secretions. The bait capture method presented herein allows the whole genome of SARS-CoV-2 in saliva to be sequenced without the need to culture and provides an outline of bait design and bioinformatic analysis to guide a bioinformatician.


Subject(s)
Genome, Viral , SARS-CoV-2/genetics , Saliva/virology , Whole Genome Sequencing/methods , Computational Biology , DNA, Complementary/genetics , Humans , Molecular Probes/genetics , Polymerase Chain Reaction/methods , SARS-CoV-2/isolation & purification , Specimen Handling/methods , Streptavidin , Whole Genome Sequencing/instrumentation
19.
Front Immunol ; 12: 674279, 2021.
Article in English | MEDLINE | ID: covidwho-1266662

ABSTRACT

An accurate depiction of the convalescent COVID-19 immunome will help delineate the immunological milieu crucial for disease resolution and protection. Using mass cytometry, we characterized the immune architecture in patients recovering from mild COVID-19. We identified a virus-specific immune rheostat composed of an effector T (Teff) cell recall response that is balanced by the enrichment of a highly specialized regulatory T (Treg) cell subset. Both components were reactive against a peptide pool covering the receptor binding domain (RBD) of the SARS-CoV-2 spike glycoprotein. We also observed expansion of IFNγ+ memory CD4+ T cells and virus-specific follicular helper T (TFH) cells. Overall, these findings pinpoint critical immune effector and regulatory mechanisms essential for a potent, yet harmless resolution of COVID-19 infection.


Subject(s)
COVID-19/immunology , SARS-CoV-2/immunology , Adolescent , Adult , CD4-Positive T-Lymphocytes/immunology , Child , Child, Preschool , Female , Humans , Male , Spike Glycoprotein, Coronavirus/immunology , T Follicular Helper Cells/immunology , T-Lymphocytes, Regulatory/immunology , Young Adult
20.
EBioMedicine ; 66: 103319, 2021 Apr.
Article in English | MEDLINE | ID: covidwho-1174196

ABSTRACT

BACKGROUND: Host determinants of severe coronavirus disease 2019 include advanced age, comorbidities and male sex. Virologic factors may also be important in determining clinical outcome and transmission rates, but limited patient-level data is available. METHODS: We conducted an observational cohort study at seven public hospitals in Singapore. Clinical and laboratory data were collected and compared between individuals infected with different SARS-CoV-2 clades. Firth's logistic regression was used to examine the association between SARS-CoV-2 clade and development of hypoxia, and quasi-Poisson regression to compare transmission rates. Plasma samples were tested for immune mediator levels and the kinetics of viral replication in cell culture were compared. FINDINGS: 319 patients with PCR-confirmed SARS-CoV-2 infection had clinical and virologic data available for analysis. 29 (9%) were infected with clade S, 90 (28%) with clade L/V, 96 (30%) with clade G (containing D614G variant), and 104 (33%) with other clades 'O' were assigned to lineage B.6. After adjusting for age and other covariates, infections with clade S (adjusted odds ratio (aOR) 0·030 (95% confidence intervals (CI): 0·0002-0·29)) or clade O (B·6) (aOR 0·26 (95% CI 0·064-0·93)) were associated with lower odds of developing hypoxia requiring supplemental oxygen compared with clade L/V. Patients infected with clade L/V had more pronounced systemic inflammation with higher concentrations of pro-inflammatory cytokines, chemokines and growth factors. No significant difference in the severity of clade G infections was observed (aOR 0·95 (95% CI: 0·35-2·52). Though viral loads were significantly higher, there was no evidence of increased transmissibility of clade G, and replicative fitness in cell culture was similar for all clades. INTERPRETATION: Infection with clades L/V was associated with increased severity and more systemic release of pro-inflammatory cytokines. Infection with clade G was not associated with changes in severity, and despite higher viral loads there was no evidence of increased transmissibility.


Subject(s)
COVID-19/etiology , COVID-19/transmission , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Adult , Age Factors , Aged , COVID-19/epidemiology , COVID-19/immunology , Comorbidity , Female , Humans , Hypoxia/therapy , Hypoxia/virology , Male , Middle Aged , Singapore/epidemiology , Viral Load
SELECTION OF CITATIONS
SEARCH DETAIL